Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 14(6): 2345-2366, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646645

RESUMO

Rationale: Primordial follicles are limited in number and cannot be regenerated, dormant primordial follicles cannot be reversed once they enter a growth state. Therefore, the length of the female reproductive lifespan depends on the orderly progression and selective activation of primordial follicles, the mechanism of which remains unclear. Methods: We used human ovarian cortical biopsy specimens, granulosa cells from diminished ovarian reserve (DOR) patients, Hdac6-overexpressing transgenic mouse model, and RNA sequencing to analyze the crucial roles of histone deacetylase 6 (HDAC6) in fertility preservation and primordial follicle activation. Results: In the present study, we found that HDAC6 was highly expressed in most dormant primordial follicles. The HDAC6 expression was reduced accompanying reproductive senescence in human and mouse ovaries. Overexpression of Hdac6 delayed the rate of primordial follicle activation, thereby prolonging the mouse reproductive lifespan. Short-term inhibition of HDAC6 promoted primordial follicle activation and follicular development in humans and mice. Mechanism studies revealed that HDAC6 directly interacted with NGF, reducing acetylation modification of NGF and thereby accelerating its ubiquitination degradation. Consequently, the reduced NGF protein level maintained the dormancy of primordial follicles. Conclusions: The physiological significance of the high expression of HDAC6 in most primordial follicles is to reduce NGF expression and prevent primordial follicle activation to maintain female fertility. Reduced HDAC6 expression increases NGF expression in primordial follicles, activating their development and contributing to reproduction. Our study provides a clinical reference value for fertility preservation.


Assuntos
Desacetilase 6 de Histona , Camundongos Transgênicos , Fator de Crescimento Neural , Folículo Ovariano , Ubiquitinação , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/genética , Animais , Feminino , Folículo Ovariano/metabolismo , Humanos , Camundongos , Acetilação , Fator de Crescimento Neural/metabolismo , Células da Granulosa/metabolismo
2.
Sci Bull (Beijing) ; 69(8): 1122-1136, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38302330

RESUMO

In a growing follicle, the survival and maturation of the oocyte largely depend on support from somatic cells to facilitate FSH-induced mutual signaling and chemical communication. Although apoptosis and autophagy in somatic cells are involved in the process of FSH-induced follicular development, the underlying mechanisms require substantial study. According to our study, along with FSH-induced antral follicles (AFs) formation, both lysine-specific demethylase 1 (LSD1) protein levels and autophagy increased simultaneously in granulosa cells (GCs) in a time-dependent manner, we therefore evaluated the importance of LSD1 upon facilitating the formation of AFs correlated to autophagy in GCs. Conditional knockout of Lsd1 in GCs resulted in significantly decreased AF number and subfertility in females, accompanied by marked suppression of the autophagy in GCs. On the one hand, depletion of Lsd1 resulted in accumulation of Wilms tumor 1 homolog (WT1), at both the protein and mRNA levels. WT1 prevented the expression of FSH receptor (Fshr) in GCs and thus reduced the responsiveness of the secondary follicles to FSH induction. On the other hand, depletion of LSD1 resulted in suppressed level of autophagy by upregulation of ATG16L2 in GCs. We finally approved that LSD1 contributed to these sequential activities in GCs through its H3K4me2 demethylase activity. Therefore, the importance of LSD1 in GCs is attributable to its roles in both accelerating autophagy and suppressing WT1 expression to ensure the responsiveness of GCs to FSH during AFs formation.


Assuntos
Células da Granulosa , Folículo Ovariano , Feminino , Humanos , Folículo Ovariano/metabolismo , Células da Granulosa/metabolismo , Transdução de Sinais , Hormônio Foliculoestimulante/farmacologia , Autofagia/genética
3.
Nucleic Acids Res ; 52(1): 186-203, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38000372

RESUMO

The ubiquitous bacterial second messenger cyclic diguanylate (c-di-GMP) coordinates diverse cellular processes through its downstream receptors. However, whether c-di-GMP participates in regulating nitrate assimilation is unclear. Here, we found that NasT, an antiterminator involved in nitrate assimilation in Pseudomonas putida, specifically bound c-di-GMP. NasT was essential for expressing the nirBD operon encoding nitrite reductase during nitrate assimilation. High-level c-di-GMP inhibited the binding of NasT to the leading RNA of nirBD operon (NalA), thus attenuating the antitermination function of NasT, resulting in decreased nirBD expression and nitrite reductase activity, which in turn led to increased nitrite accumulation in cells and its export. Molecular docking and point mutation assays revealed five residues in NasT (R70, Q72, D123, K127 and R140) involved in c-di-GMP-binding, of which R140 was essential for both c-di-GMP-binding and NalA-binding. Three diguanylate cyclases (c-di-GMP synthetases) were found to interact with NasT and inhibited nirBD expression, including WspR, PP_2557, and PP_4405. Besides, the c-di-GMP-binding ability of NasT was conserved in the other three representative Pseudomonas species, including P. aeruginosa, P. fluorescens and P. syringae. Our findings provide new insights into nitrate assimilation regulation by revealing the mechanism by which c-di-GMP inhibits nitrate assimilation via NasT.


Assuntos
Proteínas de Bactérias , GMP Cíclico , Nitratos , Pseudomonas putida , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Simulação de Acoplamento Molecular , Nitratos/metabolismo , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
4.
Am J Physiol Cell Physiol ; 326(1): C27-C39, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37661919

RESUMO

The follicle is the basic structural and functional unit of the ovary in female mammals. The excessive depletion of follicles will lead to diminished ovarian reserve or even premature ovarian failure, resulting in diminished ovarian oogenesis and endocrine function. Excessive follicular depletion is mainly due to loss of primordial follicles. Our analysis of published human ovarian single-cell sequencing results by others revealed a significant increase in rho-associated protein kinase 1 (ROCK1) expression during primordial follicle development. However, the role of ROCK1 in primordial follicle development and maintenance is not clear. This study revealed a gradual increase in ROCK1 expression during primordial follicle activation. Inhibition of ROCK1 resulted in reduced primordial follicle activation, decreased follicular reserve, and delayed development of growing follicles. This effect may be achieved through the HIPPO pathway. The present study indicates that ROCK1 is a key molecule for primordial follicular reserve and follicular development.NEW & NOTEWORTHY ROCK1, one of the Rho GTPases, plays an important role in primordial follicle reserve and follicular development. ROCK1 was primarily expressed in the cytoplasm of oocytes and granulosa cell in mice. Inhibition of ROCK1 significantly reduced the primordial follicle reserve and delayed growing follicle development. ROCK1 regulates primordial follicular reserve and follicle development through the HIPPO signaling pathway. These findings shed new lights on the physiology of sustaining female reproduction.


Assuntos
Oócitos , Folículo Ovariano , Animais , Feminino , Humanos , Camundongos , Células da Granulosa/metabolismo , Mamíferos , Oogênese , Folículo Ovariano/metabolismo , Ovário/metabolismo , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
5.
Neurosci Lett ; 810: 137346, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37308056

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease. Ferroptosis shares several features with PD pathophysiology, and anti-ferroptosis molecules are neuroprotective in PD animal models. As an antioxidant and iron chelating agent, alpha lipoic acid (ALA) has a neuroprotective effect on PD; however, the influence of ALA on ferroptosis in PD remains unclear. This study aimed to determine the mechanism of ALA in regulating ferroptosis in PD models. Results showed that ALA could ameliorate motor deficits in PD models and regulate iron metabolism by upregulating ferroportin (FPN) and ferritin heavy chain 1 (FTH1) and downregulating iron importer divalent metal transporter 1 (DMT1). Moreover, ALA decreased the accumulation of reactive oxygen species (ROS) and lipid peroxidation, rescued mitochondrial damage, and prevented ferroptosis effectively by inhibiting the downregulation of glutathione peroxidase 4 (GPX4) and cysteine/glutamate transporter (xCT) in PD. Mechanistic study indicated that the activation of SIRT1/NRF2 pathway was involved in the upregulation effect of GPX4 and FTH1. Thus, ALA ameliorates motor deficits in PD models by regulating iron metabolism and mitigating ferroptosis through the SIRT1/NRF2 signaling pathway.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Ácido Tióctico , Animais , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Sirtuína 1 , Fator 2 Relacionado a NF-E2 , Ferro , Quelantes de Ferro
6.
J Biol Chem ; 299(6): 104776, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37142227

RESUMO

A large number of oocytes in the perinatal ovary in rodents get lost for unknown reasons. The granulosa cell-oocyte mutual communication is pivotal for directing formation of the primordial follicle; however, little is known if paracrine factors participate in modulating programmed oocyte death perinatally. We report here that pregranulosa cell-derived fibroblast growth factor 23 (FGF23) functioned in preventing oocyte apoptosis in the perinatal mouse ovary. Our results showed that FGF23 was exclusively expressed in pregranulosa cells, while fibroblast growth factor receptors (FGFRs) were specifically expressed in the oocytes in perinatal ovaries. FGFR1 was one of the representative receptors in mediating FGF23 signaling during the formation of the primordial follicle. In cultured ovaries, the number of live oocytes declines significantly, accompanied by the activation of the p38 mitogen-activated protein kinase signaling pathway, under the condition of FGFR1 disruption by specific inhibitors of FGFR1 or silencing of Fgf23. As a result, oocyte apoptosis increased and eventually led to a decrease in the number of germ cells in perinatal ovaries following the treatments. In the perinatal mouse ovary, pregranulosa cell-derived FGF23 binds to FGFR1 and activates at least the p38 mitogen-activated protein kinase signaling pathway, thereby regulating the level of apoptosis during primordial follicle formation. This study reemphasizes the importance of granulosa cell-oocyte mutual communication in modulating primordial follicle formation and supporting oocyte survival under physiological conditions.


Assuntos
Apoptose , Oócitos , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Feminino , Camundongos , Gravidez , Animais Recém-Nascidos , Apoptose/genética , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Ligação Proteica , Transdução de Sinais
7.
PNAS Nexus ; 2(3): pgad055, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36938502

RESUMO

In mammalian ovaries, the balance between dormancy and activation of primordial follicles determines the female fecundity and endocrine homeostasis. Recently, several functional molecules and pathways have been reported to be involved in the activation of primordial follicles. However, the homeostasis regulatory mechanisms of primordial follicle activation are still scant. Our previous study has proved that a relatively higher concentration of cyclic AMP (cAMP) is required for primordial follicle formation. Here, we identified that cAMP also plays a vital role in the balance between dormancy and activation of primordial follicles. Our results showed that the concentration of cAMP remained stable in neonatal mouse ovaries, which is due to ADCY3, the synthetase of cAMP, and PDE3A, the hydrolytic enzyme of cAMP, were synchronously increased during the activation of primordial follicles in mouse ovaries. Once the concentration of cAMP in neonatal ovaries was either elevated or reduced in vitro, the activation of primordial follicles was either accelerated or decelerated accordingly. In addition, a higher concentration of cAMP in the ovaries of puberty mice improved primordial follicle activation in vivo. Finally, cAMP promoted primordial follicle activation via canonical mTORC1-PI3K signaling cascades and PKA signaling. In conclusion, our findings reveal that the concentration of cAMP acts as a key regulator in balancing the dormancy and activation of primordial follicles in the mouse ovary.

8.
Front Physiol ; 14: 1113684, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926197

RESUMO

Primordial follicles are the starting point of follicular development and the basic functional unit of female reproduction. Primordial follicles are formed around birth, and most of the primordial follicles then enter a dormant state. Since primordial follicles are limited in number and can't be renewed, dormant primordial follicles cannot be reversed once they enter the growing state. Thus, the orderly occurrence of primordial follicles selective activation directly affects the rate of follicle consumption and thus determines the length of female reproductive lifespan. Studies have found that appropriately inhibiting the activation rate of primordial follicles can effectively slow down the rate of follicle consumption, maintain fertility and delay ovarian aging. Based on the known mechanisms of primordial follicle activation, primordial follicle in vitro activation (IVA) technique has been clinically developed. IVA can help patients with premature ovarian failure, middle-aged infertile women, or infertile women due to gynecological surgery treatment to solve infertility problems. The study of the mechanism of selective activation of primordial follicles can contribute to the development of more efficient and safe IVA techniques. In this paper, recent mechanisms of primordial follicle activation and its clinical application are reviewed.

9.
Am J Physiol Cell Physiol ; 323(4): C1264-C1273, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36094439

RESUMO

In female mammals, the size of the initially established primordial follicle pool within the ovaries determines the reproductive life span. Interestingly, the establishment of the primordial follicle pool is accompanied by a remarkable programmed oocyte loss for unclear reasons. Here, we identify a new role of ASH1-like histone lysine methyltransferase (ASH1L) in controlling the apoptosis of oocytes during meiotic prophase I in mice. Our results showed that overexpression of Ash1l led to a dramatic loss of fetal oocytes via apoptosis, which subsequently resulted in a reduced capacity of the primordial follicle pool. Overexpression of Ash1l also led to a deficiency in DNA double-strand break repair associated with premature upregulation of p63 and phosphorylated checkpoint kinase 2 (p-CHK2), the major genome guardian of the female germline, following Ash1l overexpression in fetal ovaries. In summary, ASH1L is one of the indispensable epigenetic molecules that acts as a guardian of the genome. It protects oocyte genome integrity and removes oocytes with serious DNA damage by regulating the expression of p63 and p-CHK2 during meiotic prophase I in mice. Our study provides a perspective on the physiological regulatory role of DNA damage checkpoint signaling in fetal oocyte guardianship and female fertility.


Assuntos
Meiose , Oócitos , Animais , Apoptose/genética , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Mamíferos/metabolismo , Camundongos , Oócitos/metabolismo
10.
Appl Environ Microbiol ; 88(4): e0227021, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34985979

RESUMO

The exopolysaccharide (EPS) Pea is essential for wrinkly colony morphology, pellicle formation, and robust biofilm production in Pseudomonas putida. The second messenger cyclic diguanylate monophosphate (c-di-GMP) induces wrinkly colony morphology in P. putida through an unknown mechanism(s). Herein, we found that c-di-GMP modulates wrinkly colony morphology via the regulation of expression of eppA (PP_5586), a small individually transcribed gene of 177 bp, and this gene was adjacent to the upstream region of the pea cluster. Phenotype observation revealed that eppA was essential for Pea-dependent phenotypes. The deletion of eppA led to a smooth colony morphology and impaired biofilm, which was analogous to the phenotypes with loss of the entire pea operon. eppA expression was positively regulated by c-di-GMP via the transcriptional effector FleQ, and eppA was essential for the c-di-GMP-induced wrinkly colony morphology. Structure prediction results implied that EppA had two transmembrane regions, and Western blotting revealed that EppA was located on the cell membrane. Transcriptomic analysis indicated that EppA had no significant effect on the transcriptomic profile of P. putida. A bacterial two-hybrid (BTH) assay suggested that there was no direct interaction between EppA and the proteins in the pea cluster and adjacent operons. Overall, these findings reveal that EppA is essential for Pea-dependent phenotypes and that c-di-GMP modulates Pea-dependent phenotypes via regulation of eppA expression in P. putida. IMPORTANCE Microbe-secreted EPSs are high-molecular-weight polysaccharides that have the potential to be used as industrially important biomaterials. The EPS Pea in P. putida is essential for wrinkly colony morphology and pellicle formation. Here, we identified a function-unknown protein, EppA, which was also essential for Pea-dependent wrinkly colony morphology and pellicle formation, and EppA was probably involved in Pea secretion. Meanwhile, our results indicated that the second messenger c-di-GMP positively regulated the expression of EppA, resulting in Pea-dependent wrinkly colony morphology. Our results reveal the relationship of c-di-GMP, EppA, and Pea-dependent phenotypes and provide a possible pathway to construct genetically engineered strains for high Pea production.


Assuntos
Pseudomonas putida , Proteínas de Bactérias/metabolismo , Biofilmes , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Fenótipo , Regiões Promotoras Genéticas , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Sistemas do Segundo Mensageiro
11.
Environ Microbiol ; 23(9): 5239-5257, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33938113

RESUMO

Two-component systems (TCSs) are predominant means by which bacteria sense and respond to environment signals. Genome of Pseudomonas putida contains dozens of putative TCS-encoding genes, but phenotypical-genotypical correlation and transcriptional regulation of these genes are largely unknown. Herein, we characterized function and transcriptional regulation of a conserved P. putida TCS, named TarR-TarS. TarS (PP_0769) encodes a potential histidine kinase, and tarR (PP_0768) encodes a potential response regulator. Protein-protein interaction assay and phosphorylation assay confirmed that TarR-TarS was a functional TCS. Growth assay under antibiotics revealed that TarR-TarS positively regulated bacterial resistance to multiple antibiotics. Pull-down assay revealed that TarR directly interacted with PP_0800 (a hypothetical protein) and GroEL (the chaperonin). GroEL played a positive role in antibiotic resistance, while PP_0800 seemed to have no effect on antibiotic resistance. The regulator FleQ indirectly activated tarR-tarS transcription. However, the second messenger c-di-GMP antagonized FleQ activation to inhibit tarR-tarS transcription. The sigma factor FliA directly activated tarR-tarS transcription via a consensus motif. These findings reveal function and transcriptional regulation of TarR-TarS, and enrich knowledge regarding the relationship between c-di-GMP and antibiotic susceptibility in P. putida.


Assuntos
Pseudomonas putida , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , Regulação Bacteriana da Expressão Gênica , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
12.
Cell Death Dis ; 12(6): 559, 2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34052832

RESUMO

Primordial follicle pool established perinatally is a non-renewable resource which determines the female fecundity in mammals. While the majority of primordial follicles in the primordial follicle pool maintain dormant state, only a few of them are activated into growing follicles in adults in each cycle. Excessive activation of the primordial follicles accelerates follicle pool consumption and leads to premature ovarian failure. Although previous studies including ours have emphasized the importance of keeping the balance between primordial follicle activation and dormancy via molecules within the primordial follicles, such as TGF-ß, E-Cadherin, mTOR, and AKT through different mechanisms, the homeostasis regulatory mechanisms of primordial follicle activation remain unclear. Here, we reported that HDAC6 acts as a key negative regulator of mTOR in dormant primordial follicles. In the cytoplasm of both oocytes and granulosa cells of primordial follicles, HDAC6 expressed strong, however in those activated primordial follicles, its expression level is relatively weaker. Inhibition or knockdown of HDAC6 significantly promoted the activation of limited primordial follicles while the size of follicle pool was not affected profoundly in vitro. Importantly, the expression level of mTOR in the follicle and the activity of PI3K in the oocyte of the follicle were simultaneously up-regulated after inhibiting of HDAC6. The up-regulated mTOR leads to not only the growth and differentiation of primordial follicles granulosa cells (pfGCs) into granulosa cells (GCs), but the increased secretion of KITL in these somatic cells. As a result, inhibition of HDAC6 awaked the dormant primordial follicles of mice in vitro. In conclusion, HDAC6 may play an indispensable role in balancing the maintenance and activation of primordial follicles through mTOR signaling in mice. These findings shed new lights on uncovering the epigenetic factors involved physiology of sustaining female reproduction.


Assuntos
Desacetilase 6 de Histona/metabolismo , Folículo Ovariano/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Proliferação de Células/fisiologia , Feminino , Camundongos , Oócitos/citologia , Oócitos/metabolismo , Folículo Ovariano/citologia , Transdução de Sinais
13.
mSystems ; 6(3)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33975969

RESUMO

The bacterial second messenger cyclic diguanylate (c-di-GMP) modulates plankton-to-biofilm lifestyle transition of Pseudomonas species through its transcriptional regulatory effector FleQ. FleQ regulates transcription of biofilm- and flagellum-related genes in response to c-di-GMP. Through transcriptomic analysis and FleQ-DNA binding assay, this study identified five new target genes of c-di-GMP/FleQ in P. putida, including PP_0681, PP_0788, PP_4519 (lapE), PP_5222 (cyaA), and PP_5586 Except lapE encoding an outer membrane pore protein and cyaA encoding an adenylate cyclase, the functions of the other three genes encoding hypothetical proteins remain unknown. FleQ and c-di-GMP coordinately inhibit transcription of PP_0788 and cyaA and promote transcription of PP_0681, lapE, and PP_5586 Both in vitro and in vivo assays show that FleQ binds directly to promoters of the five genes. Further analyses confirm that LapE plays a central role of in the secretion of adhesin LapA and that c-di-GMP/FleQ increases lapE transcription, thereby promoting adhesin secretion and biofilm formation. The adenylate cyclase CyaA is responsible for synthesis of another second messenger, cyclic AMP (cAMP). FleQ and c-di-GMP coordinate to decrease the content of cAMP, suggesting that c-di-GMP and FleQ coregulate cAMP by modulating cyaA expression. Overall, this study adds five new members to the c-di-GMP/FleQ-regulated gene family and reveals the role of c-di-GMP/FleQ in LapA secretion and cAMP synthesis regulation in P. putida IMPORTANCE c-di-GMP/FleQ promotes the plankton-to-biofilm lifestyle transition at the transcriptional level via FleQ in Pseudomonas species. Identification of new target genes directly regulated by c-di-GMP/FleQ helps to broaden the knowledge of c-di-GMP/FleQ-mediated transcriptional regulation. Regulation of lapE by c-di-GMP/FleQ guarantees highly efficient LapA secretion and biofilm formation. The mechanism of negative correlation between c-di-GMP and cAMP in both P. putida and P. aeruginosa remains unknown. Our result concerning transcriptional inhibition of cyaA by c-di-GMP/FleQ reveals the mechanism underlying the decrease of cAMP content by c-di-GMP in P. putida.

14.
Front Cell Dev Biol ; 9: 654028, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842483

RESUMO

Meiosis is the basis of sexual reproduction. In female mammals, meiosis of oocytes starts before birth and sustains at the dictyate stage of meiotic prophase I before gonadotropins-induced ovulation happens. Once meiosis gets started, the oocytes undergo the leptotene, zygotene, and pachytene stages, and then arrest at the dictyate stage. During each estrus cycle in mammals, or menstrual cycle in humans, a small portion of oocytes within preovulatory follicles may resume meiosis. It is crucial for females to supply high quality mature oocytes for sustaining fertility, which is generally achieved by fine-tuning oocyte meiotic arrest and resumption progression. Anything that disturbs the process may result in failure of oogenesis and seriously affect both the fertility and the health of females. Therefore, uncovering the regulatory network of oocyte meiosis progression illuminates not only how the foundations of mammalian reproduction are laid, but how mis-regulation of these steps result in infertility. In order to provide an overview of the recently uncovered cellular and molecular mechanism during oocyte maturation, especially epigenetic modification, the progress of the regulatory network of oocyte meiosis progression including meiosis arrest and meiosis resumption induced by gonadotropins is summarized. Then, advances in the epigenetic aspects, such as histone acetylation, phosphorylation, methylation, glycosylation, ubiquitination, and SUMOylation related to the quality of oocyte maturation are reviewed.

15.
Aging Cell ; 19(3): e13102, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32074399

RESUMO

In female mammals, the size of the initially established primordial follicle (PF) pool within the ovaries determines the reproductive lifespan of females. Interestingly, the establishment of the PF pool is accompanied by a remarkable programmed oocyte loss for unclear reasons. Although apoptosis and autophagy are involved in the process of oocyte loss, the underlying mechanisms require substantial study. Here, we identify a new role of lysine-specific demethylase 1 (LSD1) in controlling the fate of oocytes in perinatal mice through regulating the level of autophagy. Our results show that the relatively higher level of LSD1 in fetal ovaries sharply reduces from 18.5 postcoitus (dpc). Meanwhile, the level of autophagy increases while oocytes are initiating programmed death. Specific disruption of LSD1 resulted in significantly increased autophagy and obviously decreased oocyte number compared with the control. Conversely, the oocyte number is remarkably increased by the overexpression of Lsd1 in ovaries. We further demonstrated that LSD1 exerts its role by regulating the transcription of p62 and affecting autophagy level through its H3K4me2 demethylase activity. Finally, in physiological conditions, a decrease in LSD1 level leads to an increased level of autophagy in the oocyte when a large number of oocytes are being lost. Collectively, LSD1 may be one of indispensible epigenetic molecules who protects oocytes against preterm death through repressing the autophagy level in a time-specific manner. And epigenetic modulation contributes to programmed oocyte death by regulating autophagy in mice.


Assuntos
Apoptose/genética , Autofagia/genética , Histona Desmetilases/metabolismo , Oócitos/metabolismo , Proteína Sequestossoma-1/metabolismo , Transcrição Gênica/genética , Animais , Células Cultivadas , Feminino , Desenvolvimento Fetal/genética , Histona Desmetilases/genética , Histonas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Folículo Ovariano/metabolismo , Gravidez , Proteína Sequestossoma-1/genética , Transdução de Sinais/genética , Transfecção
16.
J Mol Cell Biol ; 12(3): 230-244, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31282930

RESUMO

Establishment of the primordial follicle (PF) pool is pivotal for the female reproductive lifespan; however, the mechanism of primordial folliculogenesis is poorly understood. Here, the transcription factor SP1 was shown to be essential for PF formation in mice. Our results showed that SP1 is present in both oocytes and somatic cells during PF formation in the ovary. Knockdown of Sp1 expression, especially in pregranulosa cells, significantly suppressed nest breakdown, oocyte apoptosis, and PF formation, suggesting that SP1 expressed by somatic cells functions in the process of primordial folliculogenesis. We further demonstrated that SP1 governs the recruitment and maintenance of Forkhead box L2-positive (FOXL2+) pregranulosa cells using an Lgr5-EGFP-IRES-CreERT2 (Lgr5-KI) reporter mouse model and a FOXL2+ cell-specific knockdown model. At the molecular level, SP1 functioned mainly through manipulation of NOTCH2 expression by binding directly to the promoter of the Notch2 gene. Finally, consistent with the critical role of granulosa cells in follicle survival in vitro, massive loss of oocytes in Sp1 knockdown ovaries was evidenced before puberty after the ovaries were transplanted under the renal capsules. Conclusively, our results reveal that SP1 controls the establishment of the ovarian reserve by regulating pregranulosa cell development in the mammalian ovary.


Assuntos
Células da Granulosa/citologia , Células da Granulosa/metabolismo , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Folículo Ovariano/metabolismo , Animais , Apoptose/genética , Biomarcadores , Suscetibilidade a Doenças , Feminino , Imunofluorescência , Proteína Forkhead Box L2/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Camundongos , Oócitos/metabolismo , Folículo Ovariano/crescimento & desenvolvimento , Insuficiência Ovariana Primária/etiologia , Insuficiência Ovariana Primária/metabolismo , Regiões Promotoras Genéticas , Receptor Notch2/genética , Receptor Notch2/metabolismo , Maturidade Sexual/genética , Transdução de Sinais
17.
Environ Microbiol ; 22(1): 142-157, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31631503

RESUMO

The ubiquitous bacterial second messenger c-di-GMP is synthesized by diguanylate cyclase (DGC) and degraded by phosphodiesterase (PDE). Pseudomonas putida has dozens of DGC/PDE-encoding genes in its genome, but the phenotypical-genotypical correlation and transcriptional regulation of these genes are largely unknown. Herein, we characterize function and transcriptional regulation of a P. putida c-di-GMP-metabolizing enzyme, GcsA. GcsA consists of two per-ARNT-sim (PAS) domains, followed by a canonical conserved central sequence pattern (GGDEF) domain and a truncated EAL domain. In vitro analysis confirmed the DGC activity of GcsA. The phenotypic observation revealed that GcsA inhibited swimming motility in an FlgZ-dependent manner. In terms of transcriptional regulation, gcsA was found to be cooperatively regulated by c-di-GMP and cAMP via their effectors, FleQ and Crp respectively. The transcription of gcsA was promoted by c-di-GMP and inhibited by cAMP. In vitro binding analysis revealed that FleQ indirectly regulated the transcription of gcsA, while Crp directly regulated the transcription of gcsA by binding to its promoter. Besides, an inverse relationship between the cellular c-di-GMP and cAMP levels in P. putida was confirmed. These findings provide basic knowledge regarding the function and transcriptional regulation of GcsA and demonstrate a crosstalk between c-di-GMP and cAMP in the regulation of the expression of GcsA in P. putida.


Assuntos
8-Bromo Monofosfato de Adenosina Cíclica/análogos & derivados , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Fósforo-Oxigênio Liases/genética , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , 8-Bromo Monofosfato de Adenosina Cíclica/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência Conservada , GMP Cíclico/metabolismo , Diester Fosfórico Hidrolases/genética , Regiões Promotoras Genéticas , Sistemas do Segundo Mensageiro
18.
FASEB J ; 33(12): 14703-14716, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31693862

RESUMO

In female mammals, the majority of primordial follicles (PFs) are physiologically quiescent, and only a few of them are activated and enter the growing follicle pool. Specific molecules, such as mammalian target of rapamycin (mTOR) and the serine/threonine kinase Akt (AKT), have been proven to be important for PF activation. However, how the transcription of these genes is regulated is not clear. Although activators of mTOR or AKT have been successfully used to rescue the fertility of patients with premature ovarian insufficiency, the low efficacy and unclear safety profile of these drugs hinder their clinical use in the in vitro activation (IVA) of PFs. Here, sirtuin 1 (SIRT1), an NAD-dependent deacetylase, was demonstrated to activate mouse PFs independent of its deacetylase activity. SIRT1 was prominently expressed in pregranulosa cells (pGCs) and oocytes, and its expression was increased during PF activation. PF activation was achieved by either up-regulating SIRT1 with a specific activator or overexpressing SIRT1. Moreover, SIRT1 knockdown in oocytes or pGCs could significantly suppress PF activation. Further studies demonstrated that SIRT1 enhanced both Akt1 and mTOR expression by acting more as a transcription cofactor, directly binding to the respective gene promoters, than as a deacetylase. Importantly, we explored the potential clinical applications of targeting SIRT1 in IVA via short-term treatment of cultured ovaries from mice and human ovarian tissues to activate PFs by applying the SIRT1 activator resveratrol. RSV-induced IVA could be a candidate strategy to develop more efficient procedures for future clinical treatment of infertility.-Zhang, T., Du, X., Zhao, L., He, M., Lin, L., Guo, C., Zhang, X., Han, J., Yan, H., Huang, K., Sun, G., Yan, L., Zhou, B., Xia, G., Qin, Y., Wang, C. SIRT1 facilitates primordial follicle recruitment independent of deacetylase activity through directly modulating Akt1 and mTOR transcription.


Assuntos
Folículo Ovariano/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Sirtuína 1/metabolismo , Serina-Treonina Quinases TOR/genética , Ativação Transcricional , Animais , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Endogâmicos NOD , Camundongos SCID , Folículo Ovariano/citologia , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirtuína 1/genética , Serina-Treonina Quinases TOR/metabolismo
19.
Appl Microbiol Biotechnol ; 103(21-22): 9077-9089, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31673742

RESUMO

Oxidative stress is an unavoidable consequence of interactions with various reactive oxygen species (ROS)-inducing agents that would damage cells or even cause cell death. Bacteria have developed defensive systems, including induction of stress-sensing proteins and detoxification enzymes, to handle oxidative stress. Cyclic diguanylate (c-di-GMP) is a ubiquitous intracellular bacterial second messenger that coordinates diverse aspects of bacterial growth and behavior. In this study, we revealed a mechanism by which c-di-GMP regulated bacterial oxidative stress resistance in Pseudomonas putida KT2440. High c-di-GMP level was found to enhance bacterial resistance towards hydrogen peroxide. Transcription assay showed that expression of two oxidative stress resistance genes, fpr-1 and katE, was promoted under high c-di-GMP level. Deletion of fpr-1 and katE both decreased bacterial tolerance to hydrogen peroxide and weakened the effect of c-di-GMP on oxidative stress resistance. The promoted expression of fpr-1 under high c-di-GMP level was caused by increased cellular ROS via a transcriptional regulator FinR. We further demonstrated that the influence of high c-di-GMP on cellular ROS depend on the existence of FleQ, a transcriptional regulatory c-di-GMP effector. Besides, the regulation of katE by c-di-GMP was also FleQ dependent in an indirect way. Our results proved a connection between c-di-GMP and oxidative stress resistance and revealed a mechanism by which c-di-GMP regulated expression of fpr-1 and katE in P. putida KT2440.


Assuntos
Proteínas de Bactérias/biossíntese , Catalase/biossíntese , GMP Cíclico/análogos & derivados , Peróxido de Hidrogênio/toxicidade , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Pseudomonas putida/metabolismo , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/fisiologia , Pseudomonas putida/genética
20.
Appl Plant Sci ; 7(7): e11273, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31346505

RESUMO

PREMISE: The natural population size of Huperzia serrata (Lycopodiaceae) has dramatically decreased and the species has become endangered due to overexploitation. Here, we developed simple sequence repeat (SSR) markers for H. serrata to survey both its genetic diversity and population structure. METHODS AND RESULTS: Based on 177 individuals, 120 SSR primer pairs were developed and optimized from five regions of the H. serrata transcriptomic data. Of these primer pairs, 20 were successfully amplified and 10 showed obvious polymorphism. These polymorphic loci were investigated to study the genetic diversity of H. serrata. Two to 11 alleles per locus were identified, the level of observed heterozygosity ranged from 0.00 to 1.00, and the level of expected heterozygosity ranged from 0.19 to 0.79. All loci were successfully amplified in H. crispata, H. sutchueniana, and H. selago. CONCLUSIONS: The 10 polymorphic primer pairs developed here will be valuable for studies of the endangered H. serrata and other related species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...